LAMA COLL ONTA

Status of Commercial Aquaculture and Research in the North Central Region – 1986

Anne R. Kapuscinski

CIRCULATING COPY
Sea Grant Depository

Station Bulletin 589–1988 (Item No. AD-SB-3681) Minnesota Agricultural Experiment Station University of Minnesota

Status of Commercial Aquaculture and Research in the North Central Region – 1986

Anne R. Kapuscinski

Station Bulletin 589–1988 (Item No. AD–SB–3681) Minnesota Agricultural Experiment Station University of Minnesota

St. Paul, Minnesota

The University of Minnesots, including the Minnesots Agricultural Experiment Station, is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, religion, color, sex, national origin, handicap, ege, veteran status, or sexual orientation.

AUTHOR

Anne Kapuscinski is an assistant professor in the Department of Fisheries and Wildlife, University of Minnesota, St. Paul, Minnesota 55108

ACKNOWLEDGEMENTS

Members of the NCA-23 Aquaculture Subgroup are thanked for assistance in obtaining survey information from their respective status. Appreciation is extended to the commercial operators who contributed some of their production data, since this was a prerequisite for this report. Mark Gross worked diligently on compilation and graphical presentation of the survey data. This work is the result of research sponsored by the Minnesota Grant College Program supported by the NOAA Office of Sea Grant, Department of Commerce under Grant No. NOAA-86AA-D-SG112 Project No. A/SE-1.

PRODUCT DISCLAIMER

Reference to commercial products or trade names is made with the understanding that no discrimination is intended and no endorsement by the Minnesota Agricultural Experiment Station or the University of Minnesota is implied.

STATUS OF COMMERCIAL AQUACULTURE AND RESEARCH IN THE NORTH CENTRAL REGION -- 1986

Anne R. Kapuscinski

Department of Fisherles and Wikilife University of Minnesota, St. Paul, Minnesota

INTRODUCTION

Aquaculture is the farming of fish, shelfish, and aquatic plants in fresh, brackish, or salt water. In the last decade, its importance as a form of agriculture has grown dramatically in the U.S. and in the world. Global production, for example, doubled from approximately 6 million to 12.4 million metric tons between 1975 and 1985; FAO analysts predict continued dramatic growth through the year 2000. In the U.S., aquaculture production more than doubled between 1975 and 1985 at which time live weight production was estimated at 500 million pounds with a pond bank value of \$500 million.

Although aquaculture is considered an emerging agri-industry in the North Central Region, the level of activity has not been documented on a regional basis. This report represents a first attempt to assess the status of commercial aquaculture production, research and extension in the North Central Region, including the twelve states of Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin.

This information was collected in a brief survey conducted for a proposal to Congress regarding creation of a North Central Regional

Aquaculture Center (NCRAC) as part of the National Aquaculture Regional Development Program of USDA. The Center was established in 1988 and is administered by Michigan State University in association with lowa State University. Future information on aquaculture production and marketing in the region will be compiled by a project of the Center.

SUMMARY

North Central Regional activities in commercial aquaculture, related industries. and aquacultural research are characterized by tremendous diversity and breadth of expertise. A survey of aquacultural activities was conducted between December 1986. and January 1987, under the direction of the Steering Committee of the NCA-23 Subcommittee on Aquaculture, Unless specified otherwise, the results, reported in Tables 1-11 and Figure 1, are 1985 estimates of the importance of aquaculture to the entire region. Many reported values are underestimates because it was difficult for most states to collect complete data during the brief duration of the survey. Major findings are as follows:

There are approximately 800 producers.

Station Bulletin 589-1988

- of food fish, bait fish, fee fishing, and fish for stocking in the North Central Region (Table 1).
- Approximately 6.7 million pounds live weight of food fish are produced per year with a gross production value of \$7.8 million and a total economic value to the region of \$15.6 million (Table 2 and Figure 1).
- Approximately 137.6 million fish per year are sold for stocking with a gross production value of \$26.6 million (Table 3 and Figure 1).
- The production of trout and other fish species for fee fishing occurs in about 569 ponds and raceways throughout the region and is valued at about \$6 million of gross sales (Table 4 and Figure 1).
- About 94,000 gallons/year plus 330,000 pounds/year of bait species are produced. Total wholesale value is \$2.4 million and economic value \$4.8 million to the region (Table 5 and Figure 1).
- Over 45 different aquatic species are commercially produced in the North Central Region (Table 6). Some privately produced fish are sold to state agencies (Table 6a).
- There are at least 23 major manufacturers of fish culture supplies and equipment located in eight states of the North Central Region (Table 7).
- 8. Commercial producers have formed twelve major trade organizations in the region (Table 8).
- Approximately 50 universities, state and federal agencies, and private institutions are involved in aquaculture research and extension. It is estimated that 101

- researchers and 24 extension/public education professionals are engaged in aquaculture activities fifty percent or more of their time (Table 9).
- The expertise of research, extension and education professionals working in aquaculture in the region covers ten major disciplines (Table 10).
- There are active aquacultural research programs at universities in every North Central Regional state (Table 11). Major funding sources between 1975 and 1986 included AES Hatch, USDA, Sea Grant, U.S. Fish and Wildlife Service, U.S. AID, Federal Aid (Dingel Johnson), and state DNRs (or similar state agencies).

In conclusion, the data on commercial aquaculture revealed that the production of fish for stocking is of greatest economic importance to the North Central Region. (Figure 1). In descending order of importance of other forms of production are food fish, fee fishing and bait fish. The following statistics, however, suggest that there is tremendous potential for expansion of food fish production and marketing in the region. In 1985, 56.707 million people living in the North Central Region consumed an estimated 822,252 million pounds of fish and shellfish. This figure excludes sportfish consumption and is derived from the Department of Commerce figure of 14.5 lbs./capita as a national average for 1985. In contrast, the North Central Region's 1985 production of food fish was 6.743 million pounds or 0.8% of the total pounds of fish and shellfish consumed (Figure 2).

The estimated, gross value of all forms of commercial aquaculture in the North Central Region in 1985 was \$42.8 million. This figure probably underestimates the economic importance of aquaculture to the region because of the brief nature of the survey.

Table 1. The number of licensed/non-licensed aquaculture producers in the North Central Region. Producers of food fish, belt fish, fee fishing, and fish for stocking are included.

	State	Number			
· · · · · ·	Illinois	22			
	Indiana	133 ¹			
	lowa	23			
	Kansas	451			
	Michigan	103			
	Minnesota	83			
	Missouri	170 ¹			
	Nebraska	35			
	North Dakota	na ²			
	Ohio	74			
	South Dakota	25			
	Wisconsin	86			
	TOTAL	799			

¹ Licenses not required of producers in these states. Missouri figure is based on 1980 and 1984 surveys of aquaculturists.

2 na = not available

Table 2. Production of food fish in the North Central Region.

State:	IL	ΙN	IA	KS	MI	MN	МО	NE	ND	ОН	SD	WI	TOTAL
No. Operators:	10	2	4	14	59	10	30	6	1	20	12	33	201
Facilities: Acres of ponds	500	12	5	304	na ⁵	115	1500	160	na	па	40	20	2656
Hundreds of In, ft, raceway	10	5.4	1.0	na	750 ²	10	140	2.0	na	na	na	13	934
Production: Thousands of lb. live wt./yr.	50	500	15	271	300	45.5	4650 ⁴	91.3	na	na	20	800	6743
Economic Value: Average price/lb. live wt.	0.55	0.90	2.50	1.10	1.80	1.583	1.05	1.98	na	пà	1.50	1.60	_
Economic value to state (\$U.S. x 1000	53)) ¹	900	75	596.2	1080	143.9	9765	361.6	na	na	60	2560	1594.7

Station Bulletin 589-1988

Calculated from: average price/lb. live wt. x lb. live wt/yr, x 2.
Used for both stocking and foodfish
Based on average for North Central Region.
This represents 4,200 lb. catfish, 300,000 lb. trout & 150,000 lb. chinese carp.

⁵ na = not available

Table 3. Production of fish for stocking in the North Central Region.

IL	IN	IA	KS	МІ	MN	MO	NE	ND	ОН	SD	WI	TOTAL
12	5	22	26	51	16	85	26	na ⁴	74	4	48	369
-										"		
300	350	150	1204	150	540	1450	375	na	370	40	100	5029
na	15	na	na	750 ²	20.5	50	5.4	na	40	na	12	892.9
na	3.75	1.5	8,77	1.3	15.63	72 ³	1.48	па	na	3.20	30	137,63
0.5 0,000)	12.3	1.5	8.93	6.38	49.4	129.6	6.4	na	na	6.4	45	266.41
	300 na na	12 5 300 350 na 15 na 3.75 0.5 12.3	12 5 22 300 350 150 na 15 na na 3.75 1.5 0.5 12.3 1.5	12 5 22 26 300 350 150 1204 na 15 na na na 3.75 1.5 8.77 0.5 12.3 1.5 8.93	12 5 22 26 51 300 350 150 1204 150 na 15 na na 750 ² na 3.75 1.5 8.77 1.3 0.5 12.3 1.5 8.93 6.38	12 5 22 26 51 16 300 350 150 1204 150 540 na 15 na na 750 ² 20.5 na 3.75 1.5 8.77 1.3 15.63 0.5 12.3 1.5 8.93 6.38 49.4	12 5 22 26 51 16 85 300 350 150 1204 150 540 1450 na 15 na na 750 ² 20.5 50 na 3.75 1.5 8.77 1.3 15.63 72 ³ 0.5 12.3 1.5 8.93 6.38 49.4 129.6	12 5 22 26 51 16 85 26 300 350 150 1204 150 540 1450 375 na 15 na na 750 ² 20.5 50 5.4 na 3.75 1.5 8.77 1.3 15.63 72 ³ 1.48 0.5 12.3 1.5 8.93 6.38 49.4 129.6 6.4	12 5 22 26 51 16 85 26 na ⁴ 300 350 150 1204 150 540 1450 375 na na 15 na na 750 ² 20.5 50 5.4 na na 3.75 1.5 8.77 1.3 15.63 72 ³ 1.48 na 0.5 12.3 1.5 8.93 6.38 49.4 129.6 6.4 na	12 5 22 26 51 16 85 26 na ⁴ 74 300 350 150 1204 150 540 1450 375 na 370 na 15 na na 750 ² 20.5 50 5.4 na 40 na 3.75 1.5 8.77 1.3 15.63 72 ³ 1.48 na na 0.5 12.3 1.5 8.93 6.38 49.4 129.6 6.4 na na	12 5 22 26 51 16 85 26 na ⁴ 74 4 300 350 150 1204 150 540 1450 375 na 370 40 na 15 na na 750 ² 20.5 50 5.4 na 40 na na 3.75 1.5 8.77 1.3 15.63 72 ³ 1.48 na na 3.20 0.5 12.3 1.5 8.93 6.38 49.4 129.6 6.4 na na 6.4	12 5 22 26 51 16 85 26 na ⁴ 74 4 48 300 350 150 1204 150 540 1450 375 na 370 40 100 na 15 na na 750 ² 20.5 50 5.4 na 40 na 12 na 3.75 1.5 8.77 1.3 15.63 72 ³ 1.48 na na 3.20 30 0.5 12.3 1.5 8.93 6.38 49.4 129.6 6.4 na na 6.4 45

Calculated from: average price/fish x number fish sold/yr
 Used for both stocking and foodfish

Table 4. Production of fish for fee fishing in the North Central Region.

State:	ΙL	1N	IA	KS	MI	MN	МО	NE	ND	он	SD	WI	TOTAL
No. Operators:	4	125	5	22	51	7	60	2	na ²	na	3	44	323
Facilities; Trout - no, ponds or raceways	3	8	1	na	5 3	22	20	na	na	na	5	na	122
Other - no. pands	10	155	4	46	10	na	220 ¹	2	na	na	па	na	447
Economic value: Total gross sales (\$U.S. x 1000)	50	3125	40	331.1	765	217.7	1160	70	na	na	200	па	5958.8

 $[\]frac{1}{2}$ Estimated from: 650 total pond acres/ ave. pond size of 3 acres. $\frac{1}{2}$ na = not available.

³ Includes major producer of goldfish, although goldfish are not stocked in natural waters. Fingerling catfish are major stocked species.

4 na = not available

Table 5. Production of balt (fish, crayfish, leeches,etc.) in the North Central Region.

State:	ίL	IN	IA	KS	МІ	MN	MO	NE	ND	ОН	SD	WI	TOTAL
No. Operators: 1	na ²	1	2	15	15	50	35	1	na	57	3	7	186
Facilities: Acres of ponds	na	5	10	395	250	16800	340	9.5	na	100	15	na	17924.5
Production: Hundreds of gallyr	na	na	na	97.4	36	790	na	0.80	na	na	12	na	936.2
or Hundreds of lbs/yr	na	100	500	na	na	na	2700	n. a .	na	na	na	na	3300
Economic value: Total wholesale value (\$U.S. x 1000)	na	40	50	285.2	80	1192	754	5.8	na	na	9.6	na	2416.6
Value to the state ¹ (\$U.S. x 1000)	na	80	100	570.3	160	2384	1508	11.5	na	na	19.2	na	4833

¹ Calculated as total wholesale value x 2. ² na = not available

Table 6. Incidence of privately produced fish that are sold to state agencies for stocking in public waters.

Species 	States	Species	States
Channel catfish Chinook salmon Crappies Fathead minnow Grass carp Golden shiners Largemouth bass Muskellunge	IA ¹ , IL, KS, MN, MO	Northem pike	IN, MIN
	MN	Sunfish sp.	MIN, MO
	MN	Suckers	MIN
	MO, WI	Tiger muskellunge	MO
	IA ¹ , MO	Trout sp.	IL, MI, MIN, ND, WI
	MO	Walleye	IA ¹ , MIN, WI
	IA ¹ , MN	White bass	IN

¹ Sold to city and county government agencies but not to state agency.

Station Bulletin 589-1988

Table 6a. Aquacultural species and their uses in the North Central Region.

Species	Food list	h F Stocking	ee Fishin 9	g Bait	Species	Food fist	n F Stockin	ee Fishi g	ing Bait
Bass:					Minnows:				
Hybrid Striped		X			All species		Х		×
Kentucky		×			Fathead		Х		Х
Largemouth		X	х						
Smallmouth		X	X		Muskellunge		Х		
Striped		X			•				
White	x	X			Northern Pike		X		
Buffalo fish	х				Paddlefish	x	X		
Buliheads		х			Shiners:				
					Emerald				X
Carp:					Golden	X			X
Bighead	Х				Grey				Х
Common	Х	Х	X						
Goldfish		Х	X	Х	Sunfish:				
Grass	X	X			Bluegill		Х	Х	
Silver	X				Hybrid Hybrid bluegill		X X		
Catfish:					Redear		x		
Blue	Х	×	×		Other		x		Х
Channel	x	â	â						•
Flathead	^	â	^		Trout/Salmon:				
		^			Brook	х	х	×	
Старрів:					Brown	x	×	x	
Black		х			Chinook	• • • • • • • • • • • • • • • • • • • •	x		
White		x			Cutthroat		x		
		,,			Lake				
Crayfish	X	X		X	Rainbow	x	X	X	
Glass shrimp		X			Walleye		X	x	
Lake Sturgeon	х	x			White sucker		x		X
<i>Mosquitofish</i> (Gambusia)		X			Whitefish	X	X		
(Gaillousia)					Yellow Perch		х	X	х

Table 7. Examples of some major manufacturers of fish culture supplies or equipment in the North Central Region.

North Central Region. **Product** State Company Name ŧL Continental Grain Co. feed ΙA Berkeley miscellaneous Fort Dodge Laboratories anaesthetics Stoller Fisheries carp pituitaries, eggs **Key Milling** fish feed Hubburt Milling, Inman, KS fish feed Со-ор fish feed MI Frigid Units chillers, etc. (manufacturing plant) MN Aeration Industries aerators Internet, Inc. netting World Container Int'l Inc. seafood shipping containers Destratifying Concepts aerators Big Redd Inc. incubators Glencoe Mills, Inc. fish feed MO Air-O-Lator Corp aerators Ralston-Purina fish feed Stewart Fish Supply miscellaneous

Table 8. Aquaculture trade organizations in the North Central Region.

Central Minnesota Fish Farmers Association
Kansas Commercial Fish Growers Association
Michigan Bait Dealers Association
Michigan Fish Growers' Association
Michigan Fish Producers' Association
Michigan Fish Producers' Association
Midwest Aquaculture Resources
Missouri Aquaculture Advisory Council
Missouri Fish Farmers Association
Nebraska Fish Farmers Association
South Dakota Wholesale Bait Producers
Wisconsin Trout Growers Association
Wisconsin Musky Clubs Alliance

Table 9. Institutional involvement in aquaculture research and extension in the North Central Region.

State	Institutions [†]	Number of Professionals						
		Research	Extension/ Public Ed.					
IL.	6	10	1					
IN	3	14	4					
IA	2	4	0					
KS	3	6	1 .					
MI	7	11	2					
MN	3	5	2					
MO	5	6	6					
NE	0	0	0					
ND	1	1	O					
ОН	10 ³	25 ³	23					
SD	4	6	2					
WI	6	13	4					
TOTALS	50	101	24					

Includes universities, state and federal agencies, and private sector.

Station Bulletin 589-1988

OH Frigid Units (sales office)

Fresh-Flow Corporation

Forelle Fish Netting Corp

Bodin Net Company

Midland Plastics, Inc.

Peterson Fiberglass

WI Duraframe netting

chillers, etc.

pond aerators

netting

netting

netting

tanks

tanks, etc.

Only includes individuals engaged in aquaculture activities 50% or more of their time.

Ohio figures are all estimates.

Table 10. Discipline strengths of professionals working in the North Central Region in 1986.

State:	IL	IN	IA	KS	MI	MN	MO	NE	ND	ОН	SD	Wi
Disciplin e :			······································								•	
Aquaculture Economics	x								x			x
Aquaculture Engineering		×			×	х	x			x		
Aquaculture Techniques	x	x	x	x	x	x	x			x	x	x
Behavior			x				x					X
Fish Health	х	×	x		×	X	х					X
Genetics	х	x	x			X	x					X
Nutrition	Х		X	x	x							х
Physiology	X	x	x		×	X	x					
Foxicology		x										
Water Quality	x	х	х	X	х	x	х			Х		

Table 11. Aquaculture related research projects funded at North Central Regional universities between 1975 and 1986.

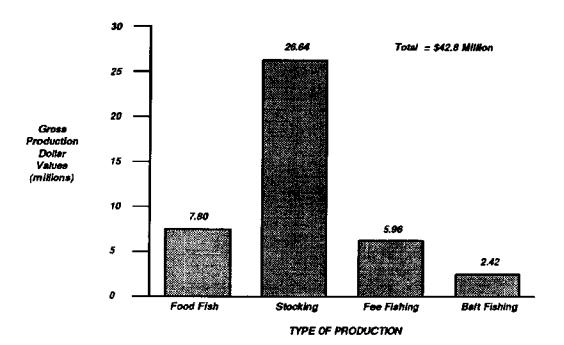
Project	No. of Years	Total Funds	Funding Agency	Project	No. of Years	Total Funds	Funding Agency
Illinois:	na ¹	na	na	Host Parasite Relationship Ichthyophthi		Channel Ca	U.S.D.A. atfish and the Protozoan
Indiana:							
Cytogenetics of Animal Perform	3 ance	na	AES Hatch	Nutritional Requiremen	3 ts of Chan		Kansas Agr, Exp. Sta.
Fisheries Biology - Aquad	3 culture	na	AES Hatch	The Effect of Protein Type Channel Cat			Kansas Agr. Exp. Sta. Raceway Culture of
Hybr. & Polyploid of Catfish	2	\$56,238	USDA S&E Aquacult.	Utilization of Wheat & Wh Diets	2 eat Co-pro		Kansas Wheat Comm rustacean & Shellfish
Transgenic Catfish	3	314,576	USDA S&E Comp. Grants				
				Michigan:			
lows:				Bioenergetics Male vs. Fer		na otics Cross	US AID
Cryopreservation of Catfish Embr		30,000	IDNR	Culture of Lak Whitefish		na	State of Michigan
Fungicides for Use in Aquacult	3 Ture	60,000	U.S.F.W.S.	Development	of 2	18,000	Mi. Agr. Exp. Sta.
Intensive Culture of Walleye	5	50,000	NY Sea Grant	Low Phosph Effluents	orus Fish F	eeds to M	linimize Phosphorus
Walleye Nutrition	. 7	140,000	IDNR	Development Methods to I			Mi, Agr. Exp. Sta. ue of Live Fish Feeds
Kansas;				Development Michigan Fis		33,000 s Tourist A	
Crayfish Culture in Kansas	2	38,918	Kansas Agr, Exp. Sta.	Production of Sterile Triplo	3 id Fishes	175,000	Michigan Sea Grant Mi. Agr. Exp. Sta.
Development of Optimum Sus	2 stained '	38,792 Yield of Fig	Kansas Agr. Exp. Sta. shes in Farm Ponds	Dynamics of Pond Aquac	3 Ulture	780,000	US AID
Fathead Minnow Production in Se	_	500 agoons	Pittsburg State Univ.	Effects of Ammonia on	1 Growth of	•	AMID EAST
Food Conversion Efficiency in Gra		-	Pittsburg State Univ. Duckweed	Effects of Daily Temperature		105,000 Growth of	MAES Culture Bait Minnows
¹ na : not available	at the ti	me of this	report	Effects of Improved Wa Catfish	na iter Quality		US AID Culture of Walking

Station Bulletin 589–1988

Table 11. (continued)

Project	No. of Years	Total Funds	Funding Agency	Project	No. of Years	Total Funds	Funding Agency
Effects of Incubation Ten	2 nperature	40,000 on Survi	na val of Chinook Salmon	Development Project: Comp Leech, <i>Nepha</i>		ulture Stra	Minnesota Sea Grant ategies for the Bait
Effects of Oxygen Super Trout	na saturatio	na n on the (Michigan Sea Grant Cutture of Rainbow	Estimation of Genetic Parar Trout, <i>Salvelin</i>			Minnesota Sea Grant telated Traits of Lake
Gas Super- saturation Effe	6 ects on La	28,500 arval Rain	Michigan Sea Grant bow Trout	Estimation of Genetic Parar	3 meters of	-	Minnesota Sea Grant t
Management of Walleye Nurse		\$15,000 3	Mi, Agr. Exp. Sta.	Gene Transfer for Growth Ho Oviparous Te		ene for Gr	Minnesota Sea Grant owth Promotion in
Market Potentia for Cultured Y		10,0 0 0 ch	Mi. Agr. Exp. Sta.	Influence of Dietary Thian	1 ninase on		Minnesota Sea Grant at Reproduction
Nutritional Requirements Indegenous to			AMID EAST / US AID mportant Tilapia	Preservation of Gametes of F		63,496 er Fish	Minnesota Sea Grant
Production of Sterile Triploid	3 I Fishes	175,000	AFTMA, MAES	Studies on the Storage & Pro for the Advan	2 eservation cement o	of Fish C	Minnesota Sea Grant carnetes and Embryos ture
Use of Steroids in Rainbow Tr		90,000 re	Michigan Sea Grant	The Relationsh of Growth Ra Salmon			Minnesota Sea Grant Itification of Chinook
Minnesota:				Thermal	3	23.900	U.F.W.S.
Analysis of Genetic & Nor	3 n-genetic	Sources -	Minnesota Sea Grant of Phenotypic Variation	Requirement of White Bass		d Bass Hy	Northern States Power brids
in Cultured W	hite Suck	ers		Utilization of	5	171,102	Northern States Powe
Application of Gamete Presi		Fechnique	Minnesota Sea Grant is to Enhance	Waste Heat f	or Aquaci	JRUTO	
Minnesota Aq	uaculture	,		Missouri:			
Bait Leech, Nephelosis of	3 oscura, C		Minnesota Sea Grant lanagement	Cage Culture of Channel Catf	sh in a	-	U.S. Office of Water Resources Research
Broodstock Management	3	3,800	Great Lakes Fishery Commission	Heated Efflue Reservoir	nt from a	Power PE	ant, Thomas Hill
Guidelines for Great Lakes F	-	Resource	Minnesota Sea Grant	Density- dependent Re	2	18,600	MO. Ag. Exp. St. MO. Dept. Cons.

Project: A Genetic Fitness Model and Broadstock Management Guidelines for Lake Trout Restoration


Table 11. (continued)

Project	No. of Years		Funding Agency	Project	No. of Years	Total Funds	Funding Agency
Limnological & Ecological Effec	2 cts of Gr		U.S.F.W.S. n Ponds	Fish Production in South Dakot		20,000	S, Dakota Ag, Exp. S
Management of Hatchery Pond	3	18,000	MO. Dept. Cons. Aeration Ind., Inc.	Fishery Development of	3 of South E		S. Dakota Ag. Exp. St nds
Productivity Paddlefish- Zooplankton In	2 teraction		MO, Dept, Cons. ery Ponds	Fungal Control Methods, Diets Paddlefish	2 & Water	,	Federal Aid tures Used to Culture
Pond Production of White Crappi		10,500	MO. Coop. Fishery Research Unit	Holding Paddlefish Bro	2 odstock is		Federal Aid Plant Reservoir
The Incidence of Lymphocystis is Thermal Effluer	n Orang		MO, Ag, Exp. St. Sunfish Subjected to a	Methods for Intensively Rea Perch	5 wing Wal		Federal Aid seilunge, & Yellow
North Dakota:				South Dakota Farm & Ranch	4 Fisheries		S. Dakota Ag. Exp. Si
Cage Culture of Black Bullhead ictaliuis melas,		na Nakota	NDGFD, Comm. Fish. Dev. Act. P.L. 88-309	Wisconsin:			
Feasibility of	na	na	na Delete	An Economic Simulation & Ev	2 aluation		WI Sea Grant ond Rearing of Perch
Waste-heat Aq The Biological &	2	na na	NDGFD, Comm. Fish.	Aquacuiture Development &			WI Sea Grant dination
Economic Aspe of Cage Rearin Dakota		ow Trout, S	Dev. Act, P.L. 88-309 Salmo gairdneri, in N orth	Aquaculture Facilities on UV			St. of Wisconsin
Ohio:	3		Sea Grant	Assessment of Dietary Amino Great Lakes Fis	Acid Req	432,246 uìrements	Hatch of a Representative
Ohio: Culturing Minnows for Ba		a	Ohio State Univ.	Assessment of the Feasibility of Combined Pond	f	na Culture of	Sea Grant/UIR/ Cooperative Res. Yellow Perch
South Dakota:				Basic	_		WI Sea Grant
Catfish Cage in Heated Powe	2 r Plant	20,000	National Marine Culture Fisheries Serv.	Husbandry of G	reat Lake	s Fishes	
Waters				Comparative Studies on the F		348,116 ents of Se	ria lected Great Lakes
Development of Polyploid Fishe	4 s for So		S, Dakota Ag, Exp. St. Waters	Fishes for Prote	in & Key i		
Evaluation of Power Plant He Culture	na ated Wa		Federal Aid /alleye & Muskeltunge	Control of Sexual Differentation in		•	WI Sea Grant

Table 11. (continued)

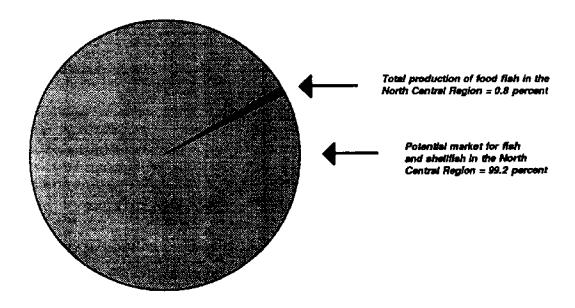

Project	No. of Years	Total Funds	Funding Agency		No. of Years	Total Funds	Funding Agency
Development of Aquaculture Sy	2 rstems fo	48,508 or Coolwa	WI Sea Grant ter Fish Species	Identification & Production of Tre Disease	1 out Sto	77,503 cks Geneti	na cally Resistant to
Development of a Fermentation Organisms for I	2 Process Feeding I	53,203 for Mass Larval Fis	Culturing Live Food	Lake Mills Aquaculture Fac	4 cility	250,000	Sea Grant/DNR/UW
Effects of Environmental Disease in Coo			na s on Resistance to	Miscellaneous Facility & Equipo Industry	4 ment G		Multiple donors Agencies & Private
			WI Sea Grant s on Resistance to	Propagation of Perch & Walleye	2	58,558	WI Sea Grant
Disease in Fish Genetic Manipulation of Lakes Cool-wai	2 Growth		WI Sea Grant tion of Selected Great	Raising Yellow Perch for Huma	1 n Food	79,868	WI Sea Gram

Figure 1. Gross production values for the North Central Region, in millions of deliars, for the four types of fish production. Values were taken from Tables 2–5. The value for food fish (77.97) is one-half of the total economic value given in Table 2.

Station Bulletin 589–1988

Figure 2. A comparison between 1985 food fish production (dark portion) and total fish and shelifish consumption (whole pie) in the North Central Region, based on the national average per capita fish consumption of 14.5 pounds. The shaded portion (the difference between regional production and consumption) represents the potential market for regionally produced fish and shelifish.

